第一个是堆模板,堆顶为最大或者最小的那个值,具体是大还是小,取决于个人,二叉堆的原理主要是,如下是个小根堆
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int heap[2000005],siz,n;
void push(int x){
heap[++siz]=x;
int now=siz;
while(now){
if(heap[now]<heap[now>>1])
swap(heap[now],heap[now>>1]);
else break;
now>>=1;
}
}
void pop(){
swap(heap[siz],heap[1]);
siz--;
int now=1;
while((now<<1)<=siz){
int nxt=now<<1;
if(nxt+1<=siz&&heap[nxt+1]<heap[nxt]) nxt++;
if(heap[nxt]<heap[now]) swap(heap[nxt],heap[now]);
else break;
now=nxt;
}
}
int main(){
//heap[0]=-9999999;
scanf("%d",&n);
for(int i=1;i<=n;i++){
int opt;
scanf("%d",&opt);
if(opt==1){
int x;
scanf("%d",&x);
push(x);
}
if(opt==2) printf("%d\n",heap[1]);
if(opt==3) pop();
}
return 0;
}
第二个模板是单源最短路径dijkstra的求法,具体方法就是每次找到距离源点最近的点往周围扩张,最后直至遍历整个图,上代码
#include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
#include <cmath>
#include <algorithm>
#define pa pair<int,int>
#define MAXN 500005
using namespace std;
priority_queue<pa,vector<pa>,greater<pa> >q;
int head[MAXN],nxt[MAXN],to[MAXN],val[MAXN],ce,n,m,d[MAXN],t;
bool used[MAXN];
void add(int u,int v,int w){
to[++ce]=v,nxt[ce]=head[u],head[u]=ce,val[ce]=w;
}
void dij(){
memset(d,0x3f,sizeof(d));
q.push(make_pair(0,t));
d[t]=0;
while(q.size()){
int u=q.top().second;
q.pop();
if(used[u]) continue;
used[u]=1;
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(d[v]>d[u]+val[i]){
d[v]=d[u]+val[i];
q.push(make_pair(d[v],v));
}
}
}
}
int main(){
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
dij();
for(int i=1;i<=n;i++)
if(used[i]) printf("%d ",d[i]);
else printf("2147483647 ");
return 0;
}

Comments NOTHING